
1 Overview of Linear Transformations & Projections

In this paper, we explore the underlying math of perspective projections. In particular, how 3-
dimensional objects are captured on a 2-dimensional plane. This entails computing lines through a
fixed point called the the center of projection, and understanding where these lines meet a certain
fixed 2-dimensional plane called the viewing plane.

1.1 Recap of Linear Transformations and Orthogonal Projections

Linear transformations are functions that take in a vector and output another transformed vector via matrix
multiplication. For example, the function T (x, y) = (2x + 3y,−x + 2y) is a linear transformation that can
be represented by multiplying input vectors in R2 with the matrix[

2 3
−1 2

]
.

Geometrically, this function reshapes our standard x− y plane like this:

Figure 1: T (x, y) = (2x+ 3y,−x+ 2y). Notice how (1, 0) goes to (2,−1) and (0, 1) goes to (3, 2).

A defining feature of linear transformations is that they abide by the rules of linearity. A key consequence
of this is that our grid lines always stay evenly spaced and parallel. That is, linear transformations map
linear combinations of input to linear combinations of output. Natural examples of linear transformations
are rotations about an axis, reflections about a line, and scaling. For example, the matrix[

0 1
−1 0

]
represents the linear transformation that takes in a vector (x, y) and spits out the input vector rotated
clockwise by 90◦.

Orthogonal projections are another interesting class of linear transformations. For example, orthogonal
projections onto a 2-dimensional plane in R3 collapse lines perpendicular to the plane of projection to a
single point, while points on the 2-dimensional plane stay fixed. One feature of projection transformations

1



is that they are examples of idempotent transformations, namely applying the projection more than once
returns the same result as applying the projection once. Let’s look at the following projection1 0 0

0 1 0
0 0 0


which takes in a vector (x, y, z) and projects onto the to the point (x, y, 0). Lines perpendicular to the plane
of projection collapse to single points. Lines that are not perpendicular to the xy-plane map to lines in R3.
More importantly, parallel lines in R3 map to other parallel lines in R3 contained in R3, that is, unless they
are perpendicular to the plane of projection. In the following graphic, we see what happens to a sphere in
R3 under such projection:

Figure 2: An example of a sphere under orthogonal projection.

Like orthogonal projections, Perspective Projections move input vectors onto a projected space, and they
are also idempotent because points already in the projected space remain unchanged. But unlike orthogonal
projections, perspective projections are non-linear and do not map parallel lines to parallel lines. The key
difference is that perspective projections take into account a fixed point, or perspective.

1.2 Introduction to Perspective Projections

Imagine we take a picture of the physical space we experience before us. The picture captures objects existing
in our 3-dimensional space, and it projects them into 2-dimensional space. Looking at the picture, objects
farther from the camera appear smaller while objects closer to the camera appear larger. This appearance
is natural, but we wish to understand the math going on under the hood.

Perspective projections have a fitting name. They are projections, because they are idempotent — points
on the viewing plane are fixed under perspective projection. And they are perspective, because they entail
a fixed point from which the projection occurs. In the aforementioned example, the camera lens would be
the fixed point, or ‘center of projection’, and the 2-dimensional picture would represent the new dimension
R2, or ‘viewing plane’.

 Attributes of Perspective Projections:

❖ Center of Projection - the perspective from which projection occurs

❖ Viewing Plane - the space projected onto

Before getting into the weeds of the math, let’s think about our objective: to figure out where a point in
the domain is sent to on the viewing plane after perspective projection. In order to do this, we connect
lines between the point that we want to project, our center of projection, and our viewing plane. By sliding
the point we wish to the project — over the line — to the viewing plane, we get our projected point on
the viewing plane. Regarding the computation in this way, it becomes apparent that if we were to project
a point already existing on the the viewing plane, it would remain unchanged. The following figure nicely

2



illustrates a perspective projection and its relevant lines between the center of projection and the viewing
screen.

Figure 3: Projecting (x, y, z) from center of projection (0, 0, d) to viewing plane z = 0.

Suppose we want to know where the point (x, y, z) goes under the projection depicted above. In order to
map this, we would first need to define the line joining the point (x, y, z) and the center of projection (0, 0, d),
then slide along that line until it meets the viewing plane z = 0. Let’s take a more thorough look into the
math.

2 Math of Perspective Projections

Computing perspective projections is first contingent upon defining the center of projection, the viewing
plane, and the lines that lie in between them. The following section provides general information for describ-
ing lines and planes in the language of linear algebra. Then, the succeeding section details the perspective
projection recipe!

2.1 Describing Lines and Planes in R3

A 2-dimensional plane in R3 through the origin can either be implicitly described as the solutions to a single
equation, such as x + y = 0 in three variables x, y, z, or described explicitly (i.e., parametrically) as the

collection of linear combinations of the two vectors

−1
1
0

 and

0
0
1

 that lie on this plane.

In this paper, we will focus on describing lines explicitly. Lines through the origin in R3 can be described
as multiples of a single nonzero vector in R3. For example, the pointst

1
1
0

 : t any number


describe a line. The explicit description of a line parallel to the line above but passing through the point
(4,−4, 5) is 

 4
−4
5

+ t

1
1
0

 : t any number

 .

Similarly, one may also explicitly describe the line joining two points in R3. For example, the line connecting

3



two points P :

 4
−4
5

 and Q :

 5
−3
5

 is given by

(1− t)

 4
−4
5

+ t

 5
−3
5

 : t any number

 =


 4
−4
5

+ t

1
1
0

 : t any number

 .

The point P corresponds to the value of the parameter t = 0 and the point Q corresponds to the value of
the parameter t = 1. With these technicals reviewed, we are ready to solve for a perspective projection.

2.1.1 Parallel Lines Under Linear Transformations

There is a key difference in the mapping of parallel lines under linear transformations, as opposed to under
perspective projections. Linear transformations satisfy the following equation for any two vectors a, v and
any scalar t:

T (a+ tv) = T (a) + tT (v).

By linearity, linear transformations map linear combinations of input to linear combinations of output. In
general, the line through the point a in the direction of the vector v, under a linear transformation T ,
becomes the line through the point T (a) in the direction of vector T (v). Succinctly, lines go to lines if v is
not in the null space of T (i.e., when T (v) ̸= 0), or lines go to a single point if the direction v is in the null
space of T (when T (v) = 0).

Thus, parallel lines map to parallel lines (or points) under linear transformations. Two lines are parallel if
they correspond to the same direction vector v but a different a. After applying the linear transformation,
they become lines in the same direction T (v).

Let’s visualize this by considering the orthogonal projection onto the xy-plane, and seeing what happens to
parallel lines after such projection. In general, we’ll shorthand an orthogonal projection as follows:

OP

a
b
c

 =

1 0 0
0 1 0
0 0 0

a
b
c

=

a
b
0

 .

Now take the 3 parallel lines:

t

1
1
1

 , t

1
1
1

+

0
0
1

 , and t

1
1
1

+

1
0
0

 .

Apply orthogonal projection, and we see linearity plays a key role:

OP

t

1
1
1

 = t

1
1
0

 ;

OP

t

1
1
1

+

0
0
1

 = OP

t

1
1
1

 + OP

0
0
1

 = t

1
1
0

 ;

OP

t

1
1
1

+

1
0
0

 = OP

t

1
1
1

 + OP

1
0
0

 = t

1
1
0

 +

1
0
0

 .

These parallel lines with direction vector

1
1
1

 mapped to parallel lines with direction vector

1
1
0

 under

orthogonal projection to the xy-plane. Note that this is the case where the direction vector

1
1
1

 corre-

sponding to the input lines is not in the null space of the orthogonal projection transformation, so the images
of these lines are once again lines (and not points).

4



If we instead consider three parallel lines with direction vector

0
0
1

 parametrized by t as before:

t

0
0
1

 , t

0
0
1

+

0
1
0

 , and t

0
0
1

+

1
0
0

 .

We get:

OP

t

0
0
1

 =

0
0
0

;

OP

t

0
0
1

+

0
1
0

 = OP

t

0
0
1

 + OP

0
1
0

 =

0
1
0

;

OP

t

0
0
1

+

1
0
0

 = OP

t

0
0
1

 + OP

1
0
0

 =

1
0
0

 .

Note that there is no longer a parameter t in the output vectors — each of these parallel lines collapses to a

single point under the orthogonal projection transformation because the direction vector

0
0
1

 is in the null

space of orthogonal projection onto the xy-plane.

We will see that the same is not true for perspective projections. Although lines still map to lines or points
under perspective projections (even this is not immediately clear from the algebraic description!), parallel
lines no longer map to parallel lines under perspective projection transformations.

2.2 Perspective Projection Transformation

Suppose we wish to compute the perspective projection that moves points in R3 to the plane x + y = 0,
from the point (d, d, 0). In this case, the center of projection is (d, d, 0), and the viewing plane is the plane
x + y = 0 in R3, which is the implicit definition of the 2-dimensional plane in R3 that contains the line

y = −x in R2 and the vector

0
0
1

 . Explicitly, this plane is the span of the two vectors

−1
1
0

 and

0
0
1

.

Notice too that we choose a variable center of projection. This is practical because, in real application, all
perspectives are different. The line that passes through the points (d, d, 0) and (x, y, z) is defined as

(1− t)

d
d
0

+ t

x
y
z

 =

d− td+ tx
d− td+ ty

tz

 .

The line is parameterized with a scalar t. In general, this parameter t could be thought of as an iterator
that slides along all the points of the line. Relative to the perspective projection, the value of t corresponds
to the unique point where this line — from the center of projection to any point (x, y, z) — intersects the
viewing plane. We solve for this value t using algebra — by plugging the coordinates of the point on the
line into the equation y = −x (our viewing plane!):

d− td+ ty = −d+ td− tx.

t(x− 2d+ y) = −2d.

t =
−2d

x− 2d+ y
.

5



Then to find the point in the line corresponding to this value of t, plug t back into the parameterized equation
of the line: d+ 2d2

x−2d+y
− 2dx

x−2d+y

d+ 2d2

x−2d+y
− 2dy

x−2d+y
−2dz

x−2d+y

 =


d(y−x)
x−2d+y
d(x−y)
x−2d+y
−2dz

x−2d+y

 . (Eq. 1)

That’s it, the vector above represents the output of the function that projects the input vector (x, y, z) onto
the plane x+ y = 0 from the point (d, d, 0). We’ll call it Eq. 1 as a reference for later.

2.2.1 Nonlinearity of Projections and a Linear Hack: Homogeneous Coordinates

Perspective projections do not abide by the rules of linearity. Instead there is a hack to represent a nonlin-
ear perspective projection transformation from R3 to R3 as a linear transformation from R4 to R4. This is
called employing homogeneous coordinates. The key idea that a single point (x, y, z) in R3 gets represented
by infinitely many points in R4 of the form (xh, yh, zh, h) for any nonzero h — it is this extra flexibility
with multiple representatives that lets us write down a linear map. So for example, the point (2, 3, 4) in
R3 is represented by (2, 3, 4, 1), (4, 6, 8, 2), (1, 3/2, 2, 1/2), etc in R4. For the hack, we represent each point
(x, y, z) ∈ R3 as (x, y, z, 1) ∈ R4. Now by using homogeneous coordinates to scale out the denominator, we
apply perspective projection on (x, y, z, 1) ∈ R4 to get (d(y − x), d(x − y),−2dz, x + y − 2d) ∈ R4. When
we convert back to regular coordinates in R3 from homogeneous coordinates in R4, we get the output of the
perspective projection transformation.

Hence, the extra direction provides a ‘constant that we can scale and add to the other coordinates, as
needed, via matrix multiplication’ (Crovella). The perspective projection transformation

x
y
z
1

 7→


d(y − x)
d(x− y)
−2dz

x+ y − 2d


is represented by the following matrix 

−d d 0 0
d −d 0 0
0 0 −2d 0
1 1 0 −2d

 .

Besides making perspective projections linear, this linearity sheds light on a feature of perspective projections
that is not immediately apparent from the formulaic or geometric description. Because a linear transforma-
tion from R4 to R4 can be completely reconstructed from knowing where four linearly independent vectors
in R4 go, if we know the images of four sufficiently general points in R3 under perspective projection (i.e.,
when the corresponding points in R4 using homogeneous coordinates are linearly independent vectors in R4),
then we can reconstruct and say where every point in R3 goes.

3 Features of Perspective Projections

Now that we have a map, we can play around with some coordinates and see how they are affected by the
projection and explain various features of perspective projections.

3.1 Perspective Projections are Idempotent

We can immediately show that perspective projections are idempotent. Suppose we define d = 4, making our
center of projection (4, 4, 0), and suppose we plugged in the point (2,−2, 5). After applying the projection,

6



(2,−2, 5) remains unchanged, because it is already on the viewing plane y = −x: 2
−2
5

 Eq.17−−−→


4(−2−2)
2−8−2
4(2+2)
2−8−2
−2(4)(5)
2−8−2

 =

 2
−2
5

 .

More generally, we see (as in the example above) that plugging in any point (x,−x, z), which describes a
general point on the plane x+ y = 0 in R3, we get back the point (x,−x, z), in exactly the same way: x

−x
z

 Eq.17−−−→


d(−x−x)
x−2d−x

d(x−(−x))
x−2d−x
−2dz

x−2d−x

 =

−2dx
−2d
2dx
−2d
−2dz
−2d

 =

 x
−x
z

 .

This shows that the perspective projection transformation is idempotent. This is also apparent geometri-
cally: the point on the viewing plane and the line that connects the center of projection with the viewing
plane is of course the same point.

3.2 Domain of Perspective Projections

It should be noted that the function (Eq. 1) is undefined when the denominator of the output vector
x − 2d + y becomes 0. The solution set to the denominator x − 2d + y = 0 describes a plane parallel to
the viewing plane. In parametric form with parameters t and s, the solution set to x − 2d + y = 0 is

(d, d, 0)+ t(1, 1, 0)+ s(0, 0, 1). It is the span of the two vectors

−1
1
0

 and

0
0
1

, translated to pass through

the center of projection (d, d, 0). This makes sense because the line joining the center of projection and
another point on the plane parallel to the viewing plane, translated by the center of projection, would never
intersect with the viewing plane.

3.3 Farther Objects Appear Smaller

Why do objects farther away from the center of projections appear smaller than those closer to the center of
projection? To frame this question linearly, we can create a set of objects (consisting of lines) — or collection
of points — at different distances from the center of projection, plug them into the projection function, and
see how the objects transform. Now suppose we fixed our center of projection at (−1,−1, 0), and projected
the following set of parallel line segments onto x+ y = 0:

t

−1
1
0

+

2
2
0

, t

−1
1
0

+

20
20
0

, and t

−1
1
0

+

200
200
0

 for −1 ≤ t ≤ 1.

1) Plug the line segment

{
t

−1
1
0

+

2
2
0

 : −1 ≤ t ≤ 1

}
into the projection function:

t

−1
1
0

+

2
2
0

 =

−t+ 2
t+ 2
0

 Eq.17−−−→


−1((t+2)−(−t+2))
(−t+2)+2+t+2

−1(−t+2−(t+2))
(−t+2)+2+t+2

−2(−1)(0)
(−t+2)+2+t+2

 =

−2t
6
2t
6

0

 = t

−2
6
2
6

0

 . (Eq. 2)

Note that the output consists of all multiples of a fixed vector, so the original line maps to a line through
the origin under perspective projection transformation. The line segment input mapped to a line segment
output (because t is a scalar parameter with a fixed range). That is, the line is represented by the series of

7



vectors when t is plugged in and −1 ≤ t ≤ 1. To make the comparison with the original line segment, we
now compute the end points of this output line segment by plugging t = −1 and t = 1 into (Eq. 2):

for t = −1, it gives

 1
3
−1
3

0

 and for t = 1, it gives

−1
3
1
3

0

 .

Originally, the line segment extended from (3, 1, 0) to (1, 3, 0), but after projection it spans from (1/3,−1/3, 0)
to (−1/3, 1/3, 0). The object shrunk; the original length was 2

√
2, but after projection the length is (1/3)

√
2.

Now let’s plug the other further away lines and see what happens to them.

2) Plug the line segment

{
t

−1
1
0

+

20
20
0

 : −1 ≤ t ≤ 1.

}
in:

t

−1
1
0

+

20
20
0

 =

−t+ 20
t+ 20

0

 Eq.17−−−→


−1((t+20)−(−t+20))
(−t+20)+2+t+20

−1(−t+20−(t+20))
(−t+20)+2+t+20

−2(−1)(0)
(−t+20)+2+t+20

 =

−2t
42
2t
42

0

 = t

−2
42
2
42

0

 . (Eq. 3)

Once again, we see directly from our computation that the image of a line under perspective projection is
again a line (because our output consists of multiples of a fixed vector). Now plug parameters t = −1 and
t = 1 into (Eq. 3). We get respectively:  1

21
−1
21

0

 and

−1
21
1
21

0

.

This further away line segment shrunk even more from length 2
√
2 to (2/21)

√
2.

3) Plug the line segment

{
t

−1
1
0

+

200
200
0

 : −1 ≤ t ≤ 1

}
in:

t

−1
1
0

+

200
200
0

 =

−t+ 200
t+ 200

0

 Eq.17−−−→


−1((t+200)−(−t+200))
(−t+200)+2+t+200

−1(−t+200−(t+200))
(−t+200)+2+t+200

−2(−1)(0)
(−t+200)+2+t+200

 =

−2t
402
2t
402

0

 = t

 −2
402
2

402

0

 . (Eq. 4)

Again plug in the parameter t:

for t = −1, it gives

 1
201
−1
201

0

 and for t = 1, it gives

 −1
201
1

201

0

.

The furthest away line segment shrunk from length 2
√
2 to (2/201)

√
2, even smaller. Empirically mapping

the points shows that further objects are indeed smaller after applying perspective projection. More gener-
ally, the larger the value of x+ y (which is what changes when the original object moves parallel to itself in
these calculations), the larger the denominator, so the smaller the image object.

3.4 Parallel Lines (along the viewing plane) Stay Parallel & Get Closer

Lines that are parallel along the viewing plane either lie on the plane or never intersect with the plane.

t

−1
1
0

 is the line on the viewing plane through the origin. Projected, it would of course remain unchanged

because it is already on the viewing plane. But what about projecting other lines parallel to, yet fixed off
the viewing plane? Here we argue that projecting such lines does not affect their parallelism, but it still
causes them to grow closer. Let’s project the following lines, which are all parallel to, yet not on the viewing
plane:

8



t

−1
1
0

+

2
2
0

, and t

−1
1
0

+

2
2
4

.

At first, these lines exist 4 units apart because the second line is the first line shifted up four units in the
z-direction. But after projection,

t

−1
1
0

+

2
2
0

 Eq.17−−−→

−t
3
t
3

0

 ;

t

−1
1
0

 +

2
2
4

 Eq.17−−−→

−t
3
t
3
4
3

.

They are 4
3
units apart; they grew closer!

3.5 Parallel Lines (not along the viewing plane) Meet

The line t

1
1
0

, through the origin, is perpendicular to the viewing plane x + y = 0. Here we argue that

any line perpendicular to the plane of projection through the point (x,−x, z) appears to meet at the point
(0, 0, 0) upon projection, as we project the points going to infinity. Let’s project the following three lines,
which are all perpendicular to the viewing plane:

t

1
1
0

, t

1
1
0

+

−1
1
0

, and t

1
1
0

+

 1
−1
0

.

It should be apparent that every point along the first line, t

1
1
0

 collapses to (0, 0, 0), since t

1
1
0

 is the

line that is perpendicular to the viewing plane and also connects to the center of projection. That is, when
we follow the projection recipe, creating a line between the center of projection and each input point on

t

1
1
0

, and sliding along that line until to its intersection with the viewing plane, each input point maps to

(0, 0, 0). Even more interestingly though, is that even the perpendicular lines fixed off of the origin appear
to approach or meet at the point (0, 0, 0) as one moves to infinity along the line — that is, the point (0, 0, 0)
is a limit. If we draw lines from the center of projection to the point going to infinity on the perpendicular
lines, the lines encroach on the viewing plane at the point (0, 0, 0). We will plug the lines into the perspective
projection function (with our center of projection still at (−1,−1, 0)) to demonstrate this effect.

t

1
1
0

 Eq.17−−−→

0
0
0

;

t

1
1
0

+

−1
1
0

 Eq.17−−−→

 −2
2t+2

2
2t+2

0

 = 1
t+1

−1
1
0

;

t

1
1
0

+

 1
−1
0

 Eq.17−−−→

 2
2t+2
−2

2t+2

0

 = 1
t+1

 1
−1
0

 .

Note that the image of the input line under perspective projection is once again a line but missing one point,
since we see from the calculation that the output vectors are all all nonzero multiples of a fixed vector as we
plug in various values for t. The missing point can be accounted for. As we take the point we are projecting
to infinity along these different lines (i.e., taking the limit as t → ∞), we get:

9



limt→∞

0
0
0

 =

0
0
0

;

limt→∞

 −2
2t+2

2
2t+2

0

 =

0
0
0

;

limt→∞

 2
2t+2
−2

2t+2

0

 =

0
0
0

.

Hence, moving along these parallel lines (off the viewing plane) to infinity is like getting closer and closer to
a meeting point.

The drawing below, in two point perspective, illustrates this effect. It shows that vanishing points are
not limited to parallel lines perpendicular to the viewing plane. Actually there exists vanishing points for
every direction not parallel to the viewing plane. The drawing below illustrates two vanishing points for two
different sets of parallel lines — hence the name.

Figure 4: Two Point Perspective: parallel lines not along the viewing plane meet at ‘vanishing points’.

3.6 Moving the Center of Projection to Infinity

To show the effect of moving the center of projection to infinity, we first rearrange out projection formula:

x
y
z

 Eq.17−−−→


d(y−x)
x−2d+y
d(x−y)
x−2d+y
−2dz

(x−2d+y)

 =


(y−x)
x+y
d

−2
(x−y)
x+y
d

−2
−2z

x+y
d

−2

 .

Taking the limit as d goes to infinity gives rise to the the following transformation,x
y
z

 Eq.17−−−→
d→∞

x−y
2

y−x
2

z

 .

The output of the transformation lies on the viewing plane x + y = 0 because the first two coordinates of
the output vector add to 0. This linear transformation above actually represents the orthogonal projection
onto the x+ y = 0 plane in R3! The difference between the input vector and the output vector,x

y
z

−

x−y
2

y−x
2

z

 =

 2x−(x−y)
2

2y−(y−x)
2

z − z

 =

x+y
2

x+y
2

0

 =
(x+ y

2

)1
1
0

 ,

10



a multiple of

1
1
0

, lies on the line perpendicular to the plane x + y = 0, through the origin. We see that

sending the center of projection to infinity renders the perspective obsolete, turning the perspective projec-
tion into an orthogonal one.

4 Conclusions & Applications

In life we experience things from our own perspective. The math of perspective projections appreciates and
accounts for this fact. Perspective Projections are ubiquitous in real life application. They appear in art,
graphics, and biology.

In this paper, we worked through the perspective projection that moves points in R3 to the plane x+ y = 0,
from the point (d, d, 0). It should be noted that this is one particular projection. We could also, for example,
find the perspective projection that moves points in R3 to the plane z = 0, from any point (x, y, z). Or we
could find the perspective projection that moves points in R4 onto any 2D plane, from a center of projection
that is a line rather than a point. Generally, the dimension of the viewing plane and the dimension of the
center of projection add up to one less than the ambient dimension. Some key points to heed from this
paper are that: perspective projections take into account a perspective from which the projection occurs,
and unlike orthogonal projections, perspective projections are non-linear and do not map parallel lines to
parallel lines.

Moving forward, I am curious about applying these projections to the realm of computer graphics, computer
vision, and mathematical biology.

11



5 References

❖ Crovella, M. (2021). Compuer Graphics—Linear Algebra, Geometry, and Computation.
https://www.cs.bu.edu/fac/snyder/cs132-book/landing-page.html

❖ Margalit, D., Rabinoff, J. (2019). Interactive Linear Algebra (1st ed.).
https://textbooks.math.gatech.edu/ila/ila.pdf

12


